Assignment on Hotellings $\boldsymbol{T}^{\mathbf{2}}$

We consider two empirical dispersion matrices, each based on 10 observations

$$
S_{1}=\left[\begin{array}{cc}
6 & -2 \\
-2 & 6
\end{array}\right] \text { and } S_{2}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]
$$

Furthermore we have the corresponding observed mean values

$$
\bar{X}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \text { and } \bar{Y}=\left[\begin{array}{l}
6 \\
6
\end{array}\right]
$$

1. Find Hotellings T^{2} based on the data above.
2. We assume that the underlying distributions for the X 's and Y 's in the two cases are the same. What is the probability of observing a more extreme value of T^{2} than the one found in 1.?
kc fecit 24. Nov. 2012
